Recognition of Recaptured Images Using Physical Based Features

نویسنده

  • S. A. A. H. Samaraweera
چکیده

With the development of multimedia technology and digital devices, it is very simple and easier to recapture a high quality images from LCD screens. In authentication, the use of such recaptured images can be very dangerous. So, it is very important to recognize the recaptured images in order to increase authenticity. Image recapture detection (IRD) is to distinguish realscene images from the recaptured ones. An image recapture detection method based on set of physical based features is proposed in this paper, which uses combination of low-level features including texture, HSV colour and blurriness. Twenty six dimensions of features are extracted to train a support vector machine classifier with linear kernel. The experimental results show that the proposed method is efficient with good recognition rate of distinguishing real scene images from the recaptured ones. The proposed method also possesses low dimensional features compared to the state-of-the-art recaptured methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Physical Based Features for Recognition of Recaptured Images

It is very simple and easier to recapture a high quality images from LCD screens with the development of multimedia technology and digital devices. In authentication, the use of such recaptured images can be very dangerous. So, it is very important to recognize the recaptured images in order to increase authenticity. Even though, there are a number of features that have been proposed in various...

متن کامل

A Smart Phone Image Database for Single Image Recapture Detection

Image recapture detection (IRD) is to distinguish real-scene images from the recaptured ones. Being able to detect recaptured images, a single image based counter-measure for rebroadcast attack on a face authentication system becomes feasible. Being able to detect recaptured images, general object recognition can differentiate the objects on a poster from the real ones, so that robot vision is ...

متن کامل

Integration of Color Features and Artificial Neural Networks for In-field Recognition of Saffron Flower

ABSTRACT-Manual harvesting of saffron as a laborious and exhausting job; it not only raises production costs, but also reduces the quality due to contaminations. Saffron quality could be enhanced if automated harvesting is substituted. As the main step towards designing a saffron harvester robot, an appropriate algorithm was developed in this study based on image processing techniques to recogn...

متن کامل

On the use of Textural Features and Neural Networks for Leaf Recognition

for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016